Problem
微积分每日一题11.15
微积分每日一题
大学生数学竞赛教程
profile_img

$$ { 求I=\iint_{\mathrm{S}}{\frac{xz^2\mathrm{d}y\mathrm{d}z+\left( x^2y-z^3 \right) \mathrm{d}z\mathrm{d}x+\left( 2xy+y^2z \right) \mathrm{d}x\mathrm{d}y}{\left( x^2+y^2+z^2 \right) ^{\frac{1}{2}}}},其中S是上半球面z=\sqrt{R^2-x^2-y^2}\left( R>0 \right) 的上侧.} $$

Tips: $$ { 分析:对于非封闭曲面,可以添加一个曲面使其变成封闭的曲面后,利用高斯公式转化为三重积分求解即可.} $$
Answer:

$$ { 解:由题意可知\left( x,y,z \right) \in S,且z=\sqrt{R^2-x^2-y^2}\Longrightarrow x^2+y^2+z^2=R^2,因此被积函数可表示为: \\ { \left\{ \begin{array}{l} P\left( x,y,z \right) =\frac{xz^2}{\left( x^2+y^2+z^2 \right) ^{\frac{1}{2}}}=\frac{xz^2}{R}\\ Q\left( x,y,z \right) =\frac{x^2y-z^3}{\left( x^2+y^2+z^2 \right) ^{\frac{1}{2}}}=\frac{x^2y-z^3}{R}\\ R\left( x,y,z \right) =\frac{2xy+y^2z}{\left( x^2+y^2+z^2 \right) ^{\frac{1}{2}}}=\frac{2xy+y^2z}{R}\\ \end{array} \right. ,且有:\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=\frac{z^2}{R}+\frac{x^2}{R}+\frac{y^2}{R}=\frac{1}{R}\left( x^2+y^2+z^2 \right) ;} \\ { 注意到这个结构非常适合用高斯公式,但曲面不封闭,因此补面:} \\ { 添加一块有向曲面S_1:\left\{ \begin{array}{l} x^2+y^2≥ a^2\\ z=0\\ \end{array},法向量方向朝下,S与S_1所围成的封闭区域记为\Omega 则有: \right. } \\ { I=\oiint_{\mathrm{S}\cup \mathrm{S}_1}{P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y}-\iint_{\mathrm{S}_1}{P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y};对其分别计算有:} \\ { \unicode{x2460} \oiint_{\mathrm{S}\cup \mathrm{S}_1}{P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y}\xlongequal{\mathrm{Gauss}}\iiint_{\Omega}{\frac{1}{R}\left( x^2+y^2+z^2 \right) \mathrm{d}V};} \\ { 对其进行球坐标变换有:\left\{ \left( \theta ,\varphi ,r \right) |0≥ \theta ≥ 2\pi ,0≥ \varphi ≥ \frac{\pi}{2},0≥ r≥ R \right\} ;即:} \\ { \iiint_{\Omega}{\frac{1}{R}\left( x^2+y^2+z^2 \right) \mathrm{d}V}\begin{array}{l} =\frac{1}{R}\int_0^{2\pi}{\mathrm{d}\theta}\int_0^{\frac{\pi}{2}}{\mathrm{d}\varphi}\int_0^R{r^2\cdot r^2\sin \varphi}\mathrm{d}r=\frac{1}{R}\int_0^{2\pi}{\mathrm{d}\theta}\int_0^{\frac{\pi}{2}}{\sin \varphi \mathrm{d}\varphi}\int_0^R{r^4}\mathrm{d}r\\ =\frac{1}{R}\cdot \theta \mid_{0}^{2\pi}\cdot \left( -\cos \varphi \right) \mid_{0}^{\frac{\pi}{2}}\cdot \frac{1}{5}r^5\mid_{0}^{R}=\frac{1}{R}\cdot 2\pi \cdot 1\cdot \frac{1}{5}R^5=\frac{2}{5}\pi R^4.\\ \end{array}} \\ { \unicode{x2461} -\iint_{\mathrm{S}_1}{P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y}:} \\ { 由于平面S_1:\left\{ \begin{array}{l} x^2+y^2≥ a^2\\ z=0\\ \end{array}与yOz平面和zOx平面均垂直,因此 \right. \left\{ \begin{array}{l} \iint_{\mathrm{S}_1}{P\mathrm{d}y\mathrm{d}z}=0\\ \iint_{\mathrm{S}_1}{Q\mathrm{d}z\mathrm{d}x}=0\\ \end{array}; \right. } \\ { 于是:-\iint_{\mathrm{S}_1}{P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y}=-\iint_{\mathrm{S}_1}{R\mathrm{d}x\mathrm{d}y},利用投影法有:} \\ { -\iint_{\mathrm{S}_1}{R\mathrm{d}x\mathrm{d}y}=-\left( -\iint_{\mathrm{D}}{R\mathrm{d}x\mathrm{d}y} \right) =\iint_{\mathrm{D}}{\frac{2xy+y^2z}{R}\mathrm{d}x\mathrm{d}y};D的区域为:\left\{ x,y|x^2+y^2≥ a^2 \right\} ;} \\ { 由于在平面S_1上,z=0,故y^2z=0;D关于xy对称,因此2xy为奇,2xy也为0;故\iint_D{\frac{2xy+y^2z}{R}\mathrm{d}x\mathrm{d}y}=0.} \\ { 综上所述:I=\unicode{x2460} +\unicode{x2461} =\frac{2}{5}\pi R^4.} \\ { 注:为什么-\iint_{\mathrm{S}_1}{R\mathrm{d}x\mathrm{d}y}=-\left( -\iint_{\mathrm{D}}{R\mathrm{d}x\mathrm{d}y} \right) 要加负号} \\ { 因为法向量的方向向下,我们一般取前侧,右侧,上侧方向为正\left( 即x,y,z轴的正方向 \right) .} \\ \\ $$

Comment