$$ { 设g\left( x \right) =\begin{cases} 2-x,x≤ 0\\ x+2,x>0\\ \end{cases},f\left( x \right) =\begin{cases} x^2, x<0\\ -x,x≥ 0\\ \end{cases},求g\left[ f\left( x \right) \right] .} $$
Tips Answer$$ { 解:g\left[ f\left( x \right) \right] =g\left( x \right) =\begin{cases} 2-f\left( x \right) ,f\left( x \right) ≤0\\ f\left( x \right) +2,f\left( x \right) >0\\ \end{cases}} \\ {现在开始,我们需要研究f\left( x \right) ≤ 0和f\left( x \right) >0的情况了:} \\ {当x>0时,f\left( x \right) =-x≤ 0;当x≤ 0时,f\left( x \right) =x^2>0} \\ { 于是:g\left[ f\left( x \right) \right] =g\left( x \right) =\begin{cases} 2-f\left( x \right) ,f\left( x \right) ≤ 0\\ f\left( x \right) +2,f\left( x \right) >0\\ \end{cases}} \\ {=\begin{cases} 2-\left( -x \right) ,x≥ 0\\ x^2+2, x<0\\ \end{cases}=\begin{cases} 2+x^2,x<0\\ 2+x, x≥ 0\\ \end{cases}} $$